Introduction
In the past two decades, increasing consumption of synthetic drugs and its associated side effects has led World Health Organization (WHO) to study the antioxidant activity of this plant. It also conducted an ethno botanical survey of endemic medicinal plants studying its uses by the rural populations in order to prevent and treat many current diseases (1).

Achillea species such as Achillea millefolium and Achillea biebersteinii Afan. are antispasmodic, anti-inflammatory, antiulcer and antioxidant agents mainly used for gastrointestinal disorders, estrogen-related effects, menstrual irregularities, wound care and skin inflammation (2,3). Achillea biebersteinii Afan. locally named as “Yellow marabou” in Asteraceae family, is a wide spread medicinal plant, found mainly in Europe, Asia and the USA. Its flowers appear from June to September and are widely used as antispasmodic, anti-inflammatory and anti hemorrhagic agent treating numerous illnesses, and especially used as sedative in treating dysmenorrhoea (4). Rural communities in the mountainous southwest region of Golestan province (namely Charbagh and Deraznoo areas) in north of Iran have a long original tradition of using plants as an antispasmodic, antiseptic, sedative and anti-inflammatory agent to treat gastrointestinal disorders, dyspeptic complaints, stomach ache, dysmenorrhoea, facial flushing, cramps and menopause. Also the ethanol extract of the plant is a very good free radical scavenging with the highest antioxidant activity (IC50 = 1.27±0.1 μg/ml in dry weight).

Materials and Methods
Ecological requirements and ethno pharmacology
In the present field observation, we analyzed the ecological requirements and traditional pharmaceutical knowledge of Achillea biebersteinii in preventing or treating dysmenorrhoea. Flowers of the plant were collected in July 2012 at an altitude of 2600 meters, ethanol extract was obtained by Maceration and antioxidant capacity was obtained by 1,1-diphenyl-2-picryl hydrazyl radical scavenging (DPPH).

Results:
Results showed that in traditional medicine of Golestan province, the flowers of Achillea biebersteinii has been used in combination with Peganum harmala, Mentha aquatica, Cuminum cyminum, Foeniculum vulgare and Nigella sativa as antispasmodic, anti-inflammation and sedative agent to treat stomach ache, dysmenorrhoea, facial flushing, cramps and menopause. Also the ethanol extract of the plant is a very good free radical scavenging with the highest antioxidant activity (IC50 = 1.27±0.1 μg/ml in dry weight).

Conclusion:
These finding not only confirm the use of the plant in the traditional medicine of Golestan province, but also can serve as a basis for phytochemical and pharmaceutical researches to identify and produce effective herbal drugs in prevention or treatment of common dysmenorrhoea.

Keywords: Achillea biebersteinii Afan., Antioxidant, Dysmenorrhoea, Ethno pharmacology
edge on *Achillea biebersteinii* Afan. in two small mountainous villages isolated in steppe areas within latitudes of 55° 57′ 55″ to 52°57′ 55″ and longitudes of 25° 46′ 37″ to 15° 42′ 37″, covering an area of 2800 hectares in southwest of Golestan province (Charbagh and Deraznoo), having several steppe and semi steppe ranges reaching 1800 to 2600 meters respectively, with semi-dry and cold climate. For traditional interviews, all data on plant uses, its local name, plant part and the preparation methods of traditional drugs were obtained through interviews with the practitioners and housewives (56-68 years), analyzed and compared with other findings in similar reports.

Plant material
The aerial parts of blooming plant were collected in late July 2012 from the Charbagh Mountain in southeast of Golestan province (north of Iran). The plant was identified in RCM (Research Center of Medicine Plant) with voucher specimen (No. HRCMP:451), preserved and deposited in the herbarium of Islamic Azad University of Gorgan branch, Gorgan, Iran.

Extraction and isolation
Sixty grams of air-dried plant flowers were exhaustively extracted with 470 ml methanol by maceration extraction and concentrated by using a rotary evaporator.

Antioxidant activity tests
2,2-Diphenyl-1-piricylhydrazyl radical scavenging capacity assay
The ability of the extract for free radical scavenging was assessed by Arabshahi et al. method (6). The aliquots of plant extract (20, 40, 60, 80, 100 μl) were mixed with a methanol solution of DPPH- (1 mm, 600 μl) and brought to 6 ml with solvent. After incubating in dark at room temperature the absorbance was measured at 517 nm. A DPPH- blank sample (containing 5.4 ml of methanol and 600 μl of DPPH-solution) was prepared. The percent decrease in absorbance was recorded for each concentration and percentage inhibition was calculated according to the following formula: % inhibition = [(ADPPH - A plant extract)/ADPPH] ×100. ADPPH is the absorbance value of the DPPH- blank sample and extract is the absorbance value of the test solution. The plots of the ‘percentage inhibitions amounts of dried plants (mg) in the extract’ were used to find the concentration at which 50% radical scavenging occurred (IC50).

Results
Ecological data showed that *Achillea biebersteinii* Afan. with local name of “Yellow Marambou” is a perennial wild herb (10-40 cm), growing in cool dry climate and sandy clay loam soils (1200-2600 m), requiring an average rainfall of 305.9-414.8 mm, Ec= 0.73-2.5. The yellow inflorescences of the plant appear from June to September. Labo-

Discussion
Dysmenorrhea (painful periods) is a medical condition of pain during menstruation that interferes with daily activities. It has long been treated by medicinal plant species in traditional medicine of countries (7). *Achillea biebersteinii* Afan. is one of the most common herbs used as a tonic, sedative, antispasmodic and anticholinergic agent to treat various cold, wounds, hay fever and dysmenorrhea. Additionally, it has also been used to help to regulate the menstrual cycle, promote menstruation while reducing heavy bleeding, and relieving dysmenorrhea. All these medicinal effects have also been reported by other researchers worldwide (8,9).

In similar studies it was reported that the binopacrycle (63.82% to 83.63%), 1-8 cineol (14.97% to 3.76%), α-se-linene (4.81% to 4.49%), phenols (18.44±0.085 mgGAEE g-1) and flavonoid contents (80.30±5.793 mgQUE g-1) were the main chemical composition of *Achillea biebersteinii* Afan, which are responsible for the antioxidant and antispasmodic activity of *Achillea* species (10).

To confirm our ethno pharmacological results, other researchers showed that alkaloids (harmine, β-carboline, peganol, harmalol, harmaline and vasicine) present in the seeds of *Peganum harmala* L. (11) and camphor, myrcene, cineole, carophyllene, linalool and sesquiterpene lactones were the most prevalent secondary metabolites in the flower extracts of *Achillea* species, being effective as antispasmodic and sedative agent treating dysmenorrhea and stomach ache (5,8,9).

Chamazulene, eucalyptol, camphor, alpha-terpineol, be-
ta-pinene and borneol which are present in many volatile oils of Achillea species, are well-known antioxidant, anti-inflammatory, anti allergic agents with antispasmodic action on rat duodenum against a variety of antitumor cell lines in mouse (8). Flavonoids (apigenin, rutin, luteolin and camphor), and monoterpenes (alpha-pinene, 1,8-cineole and camphor) are believed to be the source of the yarrow’s antispasmodic benefits, while the alkaloid, achilleine, is believed to help control both internal and external bleeding. Meanwhile their amounts vary within different species based on ecological factors and climatic condition in different geographical regions (10,12,13). In Traditional Chinese Medicine (TCM), the flowers of Achillea species has been used for a variety of conditions such as bleeding, wounds, haemorrhoids, varicose veins, dysmenorrhea and tuberculosis condition (3). In the entire American continent, the most important uses were for skin problems and injuries, bleeding conditions, respiratory illnesses, digestive problems, toothaches and eye problems (14). Karamenderes and Apaydin demonstrated that ethanol extract Achillea micrantha exhibits an inhibitory effect on the dose-response curves induced by acetycholine and CaCl2 on rat duodenum (13).

Some researchers have also reported that Teucrium polium L., Peganum harmala L. and Achillea millefolium L., contain harmine, harmaline, vasicinone, deoxyvasicinone, achillin, limonene, borneol, a-cadinol, caryophyllene oxide and terpinen-4-ol alkaloids (15,16). According to other reports the terpenoids (eucalyptol, camphor, a-terpinol, β-pinene, and borneol) are the principal components of Achillea millefolium L. oil with the strongly radical scavenging (IC50=1.56 µg/ml), antispasmodic, anti cholinergetic and antibacterial activity against Streptococcus pneumoniae, Clostridium perfringens, Candida albicans, Mycobacterium smegmatis, Acinetobacter Iwofii and Candida krusei. (17-19). Thus these results confirmed that the oil and extract of Achillea species possess antioxidant, antispasmodic and antimicrobial properties in vitro and thus in the treatment of dysmenorrhea.

Conclusion
These data are the first reports on antioxidant activity and ethno pharmacological information of Achillea biebersteinii Afan. It is used as antispasmodic and anti-inflammatory agent in the traditional medicine of Golestan province to treat wounds, skin infections, abdominal pain, leishmaniosis infection and dysmenorrhea. It is notable that it can serve as a basis for phychochemical and pharmaceutical studies to identify and produce effective herbal drugs in prevention and treatment of common regional diseases.

Ethical issues
The local ethics committee approved the study.

Conflict of interests
Authors declare that there is no any conflict of interest.

Acknowledgments
The article was part of research project under the code of 1354847. The research team thanks all people helping the project to be carried out, especially the Research Director of Research Center of Medicinal Plant (RCMP in Islamic Azad University of Gorgan branch) and Golestan University of Medical Science.

References
11. Fathiazad F, Azarmi Y, Khodaie L. Pharmacological

