The Omega-3 Polyunsaturated Fatty Acid Supplementation and Female Infertility

Ali Yavuzcan*1

Some reasons such as achieving high economic status before deciding to have children, having an education degree and waiting for starting a professional career cause women to delay their pregnancy decisions until late reproductive ages (1). It is known that advancing age is associated with decreased ovarian reserve (1). Today, no adjuvant therapy exists for the women with decreased ovarian reserve. Androgens and dehydroepiandrosterone are used in women with decreased ovarian reserve, but the available evidence is not strong (2,3). It was shown in polycystic ovary induced rats that omega-3 improves the ultrastructural changes in follicle-oocyte associations and reduces malondialdehyde levels (4,5). Omega-3 fatty acid supplementation in experimental models have been shown to improve folliculogenesis, oocyte maturation, and embryo quality (6). But the data about omega-3 polyunsaturated fatty acids and ovarian reserve is limited and Omega-3 polyunsaturated fatty acids supplementation merits further investigation in women with diminished ovarian reserve (7).

Reactive oxygen species (ROS) and antioxidants are in balance in a healthy body (4). Increasing the level of ROS and decreasing antioxidant systems leads to cellular oxidative damage, including a decrease in the number of ovarian follicles (8). The inflammation has a potential role in diminished ovarian function (9). Omega-3 plays an active role in the regulation of the antioxidant system and omega-3 fatty acids are thought to have positive effects on ovulation and implantation (10). Omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFA) are compounds that have a double bond at the third carbon atom from the methyl end of the carbon chain. Some of these, especially alpha-linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have very important physiological functions, and their main sources are fish and seafood (10). Omega-3 derivatives have anti-inflammatory activity (11).

On the other hand; it was declared that there is limited evidence in support of supplemental oral antioxidants for subfertile women in 2020 (12). Also, it was declared in a recent study that omega-3 serum levels are not associated with natural fertility in human (13). Stanhiser et al reported that mean omega-3, omega-6:omega-3 ratios did not significantly differ between the fertile, subfertile and infertile women ≥30 years of age (13). There were no associations (all fecundability ratios ~1.0) between pregnancy and individual omega-3 fatty acid concentrations, including alpha-linolenic acid, eicosapentaenoic acid and DHA, or omega-6 fatty acids, including linoleic acid, dihomo-γ-linolenic acid and arachidonic acid (13). In some animal studies, an elevated inflammatory status (14), and reductions in the count of primordial, primary, secondary, and antral follicles were found following exposure to a high-fat diet (15-17). Jenkinson et al highlighted that high levels of omega-3 intake with diet may cause oxidative stress, which is harmful to gametes and embryos, because lipids are hypersensitive to oxidation (18).

A recent study investigated the relationship between nutrition and reproduction with a focus on factors that cause aging, including oxidation, glycation, and chronic inflammation and the results showed that care should be taken to achieve proper intake of omega-3 fatty acids (19). Women taking omega-3 supplementation were found more likely to be younger, thinner, nulligravid, white and taking vitamin D, and multivitamins compared to women not taking omega-3s (20). After adjusting for age, obesity, race, previous pregnancy, vitamin D and multivitamin use in this study, women taking omega-3 supplements were 1.51 (95% CI 1.12, 2.04) times more probable to conceive compared to women not taking omega-3s (20). Couples...
The results about the omega-3 fatty acid supplementation and female fertility is not yet consistent. The participants used multiple types and brands with varying dosages of omega-3 fatty acids in studies (20). Most of the studies reported the type of supplement they were taking but not the concentration of omega-3s in that supplement, so it is not possible to compare dosing or a dose-response relationship (20). Oral Omega-3 supplementation alters intrafollicular fatty acids concentrations but further research is required to determine whether this intervention improves oocyte quality (21). There are few clinical trials encouraging omega 3 supplementation for restoring ovarian reserve parameters (7,22). But, the median age of the women is <35 in these studies and the number of the participants is very low (7,22).

The prevalence of diminished ovarian reserve increases in many countries and the actual problem is to improve the ovarian function. Omega 3 fatty acid supplementation is far away from this purpose now. New prospective randomized studies conducted in women with diminished ovarian reserve are needed to clarify the real effect of omega 3 fatty acid supplementation.

Ethical Issues
Not applicable.

Conflict of Interests
The author has no conflicts of interest to disclose.

References