Investigating the Potential Determining Factors Contributing to Mental Health Problems in Pregnancy During the COVID-19 Pandemic: A Systematic Review

Parisa Razmjouei1, Maryam Kasraeian2, Neda Dehghani3, Noroozi Asl Samaneh4, Fatemeh Ranjbar5, Benyamin Fazli6, Sara Saadat7, Masumeh Ghazanfarpour8*

Abstract
Objectives: The present study aimed to investigate the potential determining factors responsible for the mental health problems during the COVID-19 pandemic.
Methods: The databases including PubMed/MEDLINE, Web of Science, and Cochrane Library were searched for the required articles in February, 2021. The quality of the studies was determined based on the STROBE checklist.
Results: A total of 31 articles were included in this systematic review. Stopped in-person prenatal care and using the phone for prenatal care were significantly associated with greater changes of anxiety during COVID-19. Parity, gestational age, and pregnancy complication were found to be statistically and significantly associated with anxiety. Social and family supports were specifically associated with reduced anxiety. Women with low body mass index (BMI) were detected to be more prone to developing depression and anxiety. While obesity had protective effects on depression, stress and anxiety, lower sleep quality, lower household income, lower physical health, and less physical activity were found associated with higher anxiety levels. Other significant factors related to mental health included employment status, employment status, marriage status, household size, educational level, ethnicity, knowledge score, marital life satisfaction, and fear of the COVID-19 infection.
Conclusions: Clinical, economic, and socio-demographic physical health were associated with mental health problem during COVID-19. Therefore, it was recommended that the potential determining factors should be further explored and identified in order to help protect people against mental health problems.
Keywords: Determining factors, Mental health, Pregnancy, COVID-19, Review

Introduction
The main symptoms reported by patients with COVID-19 are fever, cough, shortness of breath, confusion, headache, sore throat, muscle ache, rhinorrhea, chest pain, diarrhea, nausea, and vomiting (1). This infection not only develops various physical disorders but also causes psychological distress, stress, anxiety, and depression, thereby seriously affecting the general and quarantined population, healthcare providers (2). Higher levels of anxiety and depression have been observed among women after the declaration of the COVID-19 epidemic (3). Concomitant infections may further increase the psychological burden on perinatal women due to health concerns about the fetus’s health (4) and fear of anticipated delivery (5). Excessive pressure on pregnant women may have indirect adverse effects on their physical and mental health (6,7).

Numerous complications, including low birth weight, premature birth, fetal growth retardation, postpartum complications, gestational diabetes, hypertension, and preeclampsia have been reported following pregnancy depression (8,9). Therefore, it is important to explore and identify potential determining factors, which may help protect people against the mental health problems. This study aimed to investigate the potential factors responsible for mental health problems during the COVID-19 pandemic.

Objective
The current meta-analysis aimed to investigate the potential factors responsible for mental health problems during the COVID-19 pandemic by reviewing all observational studies.
Methods

Participants
All women pregnant during COVID-19 pandemic were included in this study.

Search Scope
The search strategy was adopted to screen the databases of Web of Science and PubMed/MEDLINE in February, 2021, with no language restriction.

Search Strategy
The following terms were used in our search: pregnant OR pregnancy OR prenatal OR gestation OR partum OR "prepartum" OR "trimester" OR "perinatal "prenatal" OR "partus" OR "maternal") AND (epidemic OR pandemic OR COVID-19 OR SARS-COV 2) and (anxiety OR "anxiety" , "social anxiety" , "general anxiety" , "anxiety health" OR "depression" OR mental) The terms were searched in English and other languages (Figure 1).

Inclusion and Exclusion Criteria
All published articles with an observational design (e.g., cohort, longitudinal and cross-section) and assessing significant factors contributing to mental health problems in pregnancy during the COVID-19 Pandemic were included in this study. It should be also noted that the studies were not selected based on methodological quality.

Data Extraction
Two reviewers independently extracted the necessary data from the full-text articles based on a predetermined eligibility, including the name of the first author, date of publication, country of study, type of study, number of the participants, age of the participants, sampling method, sampling date, recruitment places, questionnaire, and outcomes (Table 1 and Table S1) (8,11-39).

Quality Assessment
The searched studies were assessed for quality in accordance with 22-item checklist of Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) (40), the result of which indicated a STROBE score of ≥12 as high quality and a STROBE score of <12 as low quality (41). Two separate reviewers completed checklists for all studies, and any differences between among were resolved by agreement. Total score strobe was recorded Table 1.

Results
A total of 31 articles were included in this systematic review. The potential factors causing mental health problems in pregnancy during the COVID-19 pandemic
<table>
<thead>
<tr>
<th>Author, Date, Country</th>
<th>Type of Study</th>
<th>No. of Participants</th>
<th>Age</th>
<th>Sampling Method</th>
<th>Recruitment Site</th>
<th>Questionnaires</th>
<th>Score STORBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aya et al, 2020, Turkish (12)</td>
<td>Prospective</td>
<td>N=63</td>
<td>30.4</td>
<td>Convenience sample</td>
<td>Training and research hospital</td>
<td>BAI</td>
<td>20</td>
</tr>
<tr>
<td>Efati-Daryani et al, 2020, Iran (13)</td>
<td>Cross-sectional</td>
<td>N=205</td>
<td><25=25.4%; 25-35 = 58.5%; 35>6%</td>
<td>Cluster sampling</td>
<td>Health centers</td>
<td>DASS-21</td>
<td>18</td>
</tr>
<tr>
<td>Beheshtinasab et al, 2020, Iran (14)</td>
<td>Cross-sectional</td>
<td>N=200</td>
<td>26.03</td>
<td>Convenient sampling</td>
<td>Health centers of Iran</td>
<td>HAI 18, PDQ</td>
<td>18</td>
</tr>
<tr>
<td>Kahyaoglu Sut et al, 2020, Turkey (15)</td>
<td>Cross-sectional</td>
<td>N=403</td>
<td>28.2 ± 4.5</td>
<td>Convenience sample</td>
<td>Social media</td>
<td>HADS</td>
<td>16</td>
</tr>
<tr>
<td>Saadati et al, 2020, Iran (16)</td>
<td>Cross-sectional</td>
<td>N=350</td>
<td>26.54</td>
<td>Random sample</td>
<td>The same social media</td>
<td>COPE, EPDS</td>
<td>15</td>
</tr>
<tr>
<td>Jiang et al, 2021, China (17)</td>
<td>Cross-sectional</td>
<td>N=1873</td>
<td>29</td>
<td>Direct online and snowball recruitment methods</td>
<td>Hospital</td>
<td>CPSS, SAS, EDS, EPDS</td>
<td>18</td>
</tr>
<tr>
<td>Lin et al, 2021, China (19)</td>
<td>Cross-sectional</td>
<td>N=751</td>
<td>30.51</td>
<td>Non-random sample, a snowball sampling</td>
<td>Obstetric clinics in maternity and child health care hospitals</td>
<td>SAS, PHQ9</td>
<td>18</td>
</tr>
<tr>
<td>Preis et al, 2020, USA (20)</td>
<td>Cross-sectional</td>
<td>N=788</td>
<td>29.2</td>
<td>Convenience sampling</td>
<td>Online</td>
<td>GAD-7, PREPS</td>
<td>18</td>
</tr>
<tr>
<td>Mei et al, 2020, China (21)</td>
<td>Two cohort study</td>
<td>Pregnant cohort study: N=784, Healthy baby cohort study: N=2448</td>
<td>Pregnant cohort study: 30.36; Healthy baby cohort study: 20.95</td>
<td>Convenience sampling</td>
<td>Social media</td>
<td>BSI-18, EPDS, GAD-7</td>
<td>16</td>
</tr>
<tr>
<td>Wu et al, 2020, China (22)</td>
<td>A multicenter, cross-sectional study</td>
<td>N=4124</td>
<td>27–32 years</td>
<td>Convenience sampling</td>
<td>Hospital</td>
<td>EPDS</td>
<td>17</td>
</tr>
<tr>
<td>Kassaw and Pandey, 2020, Ethiopia (23)</td>
<td>Cross-sectional</td>
<td>N=1500</td>
<td>28 110 (61.7%); 28 68 (38.3%)</td>
<td>Consecutive sampling</td>
<td>A hospital-based</td>
<td>GAD-7</td>
<td>16</td>
</tr>
<tr>
<td>Gildner et al, 2020, USA (24)</td>
<td>Cross-sectional</td>
<td>N=2099</td>
<td>31.3</td>
<td>Convenience sample</td>
<td>Social media</td>
<td>CARE</td>
<td>18</td>
</tr>
<tr>
<td>Lebo et al, Canada 2020 (10)</td>
<td>Cross-sectional</td>
<td>N=1987</td>
<td>32.4</td>
<td>Convenience sampling</td>
<td>Social media</td>
<td>EPDS</td>
<td>20</td>
</tr>
<tr>
<td>Harrison et al, 2021, UK (25)</td>
<td>Cross-sectional</td>
<td>N=205</td>
<td>18-24 (6.3%); 25-34 (62.9%); 35-44 (30.7%)</td>
<td>Convenience sample</td>
<td>A battery of online measures</td>
<td>EPDS, MPSS, PASS, RNT, RITQ-10</td>
<td>17</td>
</tr>
<tr>
<td>Author, Date, Country</td>
<td>Type of Study</td>
<td>No. of Participants</td>
<td>Age</td>
<td>Sampling Method</td>
<td>Recruitment Site</td>
<td>Questionnaires</td>
<td>Score STORBE</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Matsushima et al, 2020, Japan (26)</td>
<td>Cross-sectional</td>
<td>N=1777</td>
<td>Age <25 years: 5.35%; Age 25-29 years: 29.21%; Age 30-34 years: 37.20%; Age ≥35 years: 28.25%</td>
<td>Convenience sampling</td>
<td>Online</td>
<td>EPDS</td>
<td>18</td>
</tr>
<tr>
<td>Ravaldi et al, Italy, 2020 (27)</td>
<td>Cross-sectional</td>
<td>N=1015</td>
<td>34.4</td>
<td>Snowball technique</td>
<td>Web-based, national survey</td>
<td>NSESSS, PTSD</td>
<td>22</td>
</tr>
<tr>
<td>Daglis et al, 2020, Greece (28)</td>
<td>Cross-sectional</td>
<td>N=146</td>
<td>≥35 years: 32.5%; <35 years: 67.5%</td>
<td>Convenience sampling</td>
<td>University clinic</td>
<td>STAI</td>
<td>18</td>
</tr>
<tr>
<td>Hocaoglu et al, 2020, Turkey (29)</td>
<td>Cross-sectional</td>
<td>N=283</td>
<td>29.20</td>
<td>Convenience sample</td>
<td>Training and research hospital</td>
<td>STAI, IES-R</td>
<td>22</td>
</tr>
<tr>
<td>Ding et al, 2021, China (30)</td>
<td>Cross-sectional</td>
<td>N=817</td>
<td>29.1</td>
<td>Convenience sampling</td>
<td>Maternal hospitals</td>
<td>SAS, self-rating anxiety scale</td>
<td>18</td>
</tr>
<tr>
<td>Guo et al, China, Italy, Netherlands, 2021 (31)</td>
<td>Cross-sectional</td>
<td>Dutch n=900, Italian n=641, and Chinese mother n=922</td>
<td>36.74 ± 5.58</td>
<td>Snowball sampling</td>
<td>Social media</td>
<td>BSI-18, PTSD</td>
<td>18</td>
</tr>
<tr>
<td>Saccone et al, 2020, Italy (32)</td>
<td>Cross-sectional</td>
<td>N= 100</td>
<td>36.9</td>
<td>Convenience sampling</td>
<td>University</td>
<td>IES-R, STAI, VAS</td>
<td>16</td>
</tr>
<tr>
<td>Yue et al, 2021, China (33)</td>
<td>Cross-sectional</td>
<td>N= 308</td>
<td>31.02 ± 3.91</td>
<td>Convenience sampling</td>
<td>Online survey</td>
<td>SAS, SSRS</td>
<td>18</td>
</tr>
<tr>
<td>Moyer et al, 2020, USA (34)</td>
<td>Cross-sectional</td>
<td>N=2740</td>
<td>32.7</td>
<td>Snowball sampling</td>
<td>Online survey</td>
<td>PRAS</td>
<td>8</td>
</tr>
<tr>
<td>Pasabendige et al, Sri Lanka, 2020 (35)</td>
<td>Cross-sectional</td>
<td>N = 1500</td>
<td>29.2</td>
<td>A quota sampling technique</td>
<td>Antenatal hospital clinics</td>
<td>HADS</td>
<td>18</td>
</tr>
<tr>
<td>Thayer et al, 2020, USA (36)</td>
<td>Cross-sectional</td>
<td>N=2099</td>
<td>31.3</td>
<td>Convenience sample</td>
<td>Social media</td>
<td>EPDS</td>
<td>18</td>
</tr>
<tr>
<td>Ng et al, 2020, Singapore (37)</td>
<td>Cross-sectional</td>
<td>N= 324</td>
<td>31.8</td>
<td>Random sample</td>
<td>The antenatal clinics of and children's hospital</td>
<td>DASS-21</td>
<td>18</td>
</tr>
<tr>
<td>Duranku et al, 2020, Turkey (38)</td>
<td>Cross-sectional</td>
<td>N=260</td>
<td>29.56</td>
<td>Survey Monkey</td>
<td>Center</td>
<td>BDI, BAI, EPDS</td>
<td>18</td>
</tr>
<tr>
<td>Mappa et al, 2020, Italy (39)</td>
<td>Cross-sectional</td>
<td>N= 200</td>
<td>Median = 33</td>
<td>Convenience sampling</td>
<td>A link of questionnaire was sent through emails women antenatal clinic</td>
<td>STAI</td>
<td>18</td>
</tr>
<tr>
<td>Berthelot et al, 2020, Canada (39)</td>
<td>Two Cohorts study</td>
<td>N=1754</td>
<td>29.27</td>
<td>Convenience sample</td>
<td>Through advertisements in prenatal clinics</td>
<td>DES-II</td>
<td>20</td>
</tr>
</tbody>
</table>

STAI: State-Trait Anxiety Inventory; EPDS: Edinburgh Postnatal Depression Scale; MPSS: Multidimensional Scale of Perceived Social Support; PASS: Perinatal Anxiety Screening Scale; RNT: repetitive negative thinking; RTQ-10: repetitive negative thinking question; BDI: Beck Depression Inventory; IES-R: Impact of Event Scale-Revised; STAI: Spielberger State-Trait Anxiety Inventory; VAS: visual analog scale; SPDQ: Prenatal Distress Questionnaire; HAI 18: health anxiety index short-form; PREPS: Pandemic-Related Pregnancy Stress Scale; GAD-7: generalized anxiety disorder; PTSD: post-traumatic stress symptoms; BSI-18: Brief Symptom Inventory 18; PDQ: Prenatal Distress Questionnaire; COPE: Coronavirus perinatal experiences; CPSS: Chinese Perceived Stress Scale; EDS: Self-Rating Anxiety Scale; STAI: State-Trait Anxiety Inventory; IES-R: Impact of Events Scale-Revised; DASS-21: Depression, Anxiety and Stress Scale-21; PHQ-9: Patient Health Questionnaire; PSS: Perceived Stress Scale; NSESSS: National Stressful Events Survey; CARE: COVID-19 and Reproductive Effects; SAS: Self-Rating Anxiety Scale; IDAS II: the Inventory of Depression and Anxiety Symptoms II; BAI: Beck Anxiety Inventory; BSI-18: Brief Symptom Inventory 18; PRAS: pregnancy-related anxiety scale; SSRS: Social Support Rating Scale; DES-II: Dissociative.
were classified into four major variables: demographic variables, lifestyle variables, physical health, as well as metal and pregnancy-related factors (e.g., pregnancy complication, gestational age, the number of pregnancies maternal age, prenatal care, choose, and type of delivery).

Smoking
In the study by Dagklis et al, the odds ratio for anxiety in pregnant women with a history of smoking was three times higher than that for non-smokers ($P=0.032$) (28).

Maternal Age
The results indicated an association between younger age with higher anxiety (26) and depression level (22,26,31).

Body Mass Index
In the study by Wu et al, women with a BMI less than 18.5 were found to be more vulnerable to the developing depression and anxiety symptoms (22). It was also demonstrated that obese pregnant women might have faced lower risks of depression, stress(21), and anxiety ($P<0.05$) (12,21,22) during the COVID-19 outbreak.

Sleep Quality
According to two studies (19,21), lower sleep quality was associated with higher maternal depression and anxiety.

Physical Health
In the study by Guo et al study, poor physical health was more related to mental health symptoms (31).

Exercise
In the study by Wu et al, women who had exercised less than seven hours faced a relative risk of 1.23 of depression ($P=0.02$) when compared to women who had exercised seven hours or more per week (22). In the study by Gildner et al, participants were asked “has your exercise routine changed at all since the COVID-19 pandemic began?” and their findings showed that changes in exercise behavior during the pandemic was associated with higher depression scores than those reporting no changes (24). Physical activity status were factors related to anxiety ($P<0.05$) (10,15). In the study by Lebel et al, more physical activity decreased the anxiety symptoms (10).

Marital Life Satisfaction
Marital life satisfaction ($P<0.05$) (18) was the predictor of stress, depression (18), and anxiety symptoms (13,18). The IDAS II scores were predicted by the relationship between husband and wife ($P=0.02$) (12).

Fear of the COVID-19 Infection
Fear of contracting the COVID-19 infection ($P<0.001$) and concern about getting infected with COVID-19 from the ultrasound probe ($P<0.001$) may have influenced the prenatal anxiety (30). History of depression ($P=0.06$) predicted the IDAS II scores (12). Husbands and their pregnant wives’ fear of COVID-19 may have also influenced depression and anxiety ($P<0.001$) (11). A significant association was detected between previous depression and anxiety and current PTSD symptoms (27).

Social and Family Support
According to Wu et al, perceived poor support from family was significantly associated with a higher perinatal depression (22). Several studies showed that an increase in perceived social support decreased depression and anxiety symptoms (10,18,25). Furthermore, grandparents and spouses’ support decreased mental health problem such as anxiety and stress (13,31).

Pregnancy Complication
Pregnancy complications such as threatened abortion, hyperemesis gravidarum, gestational diabetes mellitus, hypertensive disorder, placental previa, intrahepatic cholestasis of pregnancy, oligohydramnios, and intrauterine growth restriction ($P=0.01$) were found capable of predicting state anxiety (20,29). For example, vaginal bleeding during pregnancy was associated with higher maternal depression, anxiety, and stress risks ($P<0.05$) (21).

Prenatal Care
Access to antenatal care information was associated with a significantly lower risk of perceived stress ($P=0.001$), anxiety ($P<0.001$), and depression ($P=0.005$) (17). Moreover, the lack of informal childcare support and prenatal care was statistically associated with anxiety and depression symptoms ($P<0.001$) (26). According to Moyer et al, discontinued in-person prenatal care and using phone for prenatal care were significantly associated with greater changes in the pregnancy-related anxiety scale (34).

Selection of the Delivery Type
Beheshtinasab et al discovered the relationship of health anxiety and Prenatal Distress with the selection of delivery type before and during the COVID-19 epidemic ($P<0.001$) (14).

Gestational Age
According to results from three studies, mental health problems stress and anxiety were higher at older gestational ages. In the study by Moyer et al, being in the third trimester was significantly associated with greater changes in pregnancy-related anxiety scale (PRAS) scores (34) and “total health anxiety” (16). Stress levels were higher at older gestational ages ($P=0.008$) (18). Contrary to the results from above-mentioned studies, psychological impact of the COVID-19 outbreak was more severe in women in the first trimester of pregnancy(32).
The Number of Pregnancies
The number of pregnancies was significantly associated with anxiety (13,18,23) and depressive disorder (22).

Marriage Status
Being single or divorced/widowed was determined as a factor contributing to increasing the risks associated with anxiety and depression symptoms \((P < 0.001) \) (26,31).

Financial Difficulties and Household Income
Financial difficulties and household income were statistically associated with mental problem \((P < 0.001) \) \((8,13,18,22,26,35,36,39) \).

Education Level
Level of education was another variable significantly associated with anxiety disorder (18,23,38,39) and depression (8,22). Higher maternal education was associated with mental health (31). In addition, spouse's education was the predictive factors of anxiety (13,18) depression (18).

Employment Status and Workload
Women not working \((RR=1.40; \ P = 0.001) \) or working part-time \((RR=1.43; \ P < 0.01) \) had a lower relative risk of depression compared to women working full-time (22,26). Full-time working was statistically associated with anxiety symptoms \((P < 0.05) \). Unemployment of women was associated with mental health (31). Employment status of husband \((P = 0.04) \) (29) and spouse's job \((P < 0.05) \) were the predictors of anxiety level and depression level, respectively (18).

Household Size
A significant association was observed between prenatal anxiety \((P = 0.009) \) (30) with household size, stress scores \((B=0.0454; \ 95\% \ CI: \ 0.0035-0.0873) \) (37), and number of previous children in the family.

Knowledge Score
Getting information about COVID-19 (15,30) from television (35) and healthcare workers were related to anxiety level \((P < 0.05) \) (15).

Discussion
Our study showed that a higher educational level was associated with less anxiety and depression problems (18,22,23,38,39). Mei et al illustrated two aspects of this result. First, a higher educational level was usually correlated with higher family income, which makes pregnant women less worried about the economic foundations as there is an expenditure caused by pregnancy, delivery, and raising the child. Second, women with higher educational levels may have had a better understanding of the pregnancy process, delivery, and raising child and, therefore, responded to emergencies more adequately (21).

Women with a BMI less than 18.5 were likely more vulnerable to developing depression and anxiety symptoms (22). Obese pregnant women might have had lower risks of depression, stress (21), and anxiety \((P < 0.05) \) (21,22,44) during the COVID-19 outbreak. Findings from another study suggested that maternal pre-pregnancy obesity had a protective effect on mental problems such as anxiety (21). These findings were inconsistent with the results of studies conducted on pregnant women in a period when the COVID-19 pandemic was not prevalent. Bogaerts et al detected a significant increase in anxiety from trimester one to trimester three in obese pregnant women; however, according to them, anxiety remained unchanged during the three trimesters in pregnancy of normal-weight women (42). Three studies included in our systematic review suggested that obese pregnant women may have been vulnerable to comorbid anxiety (12,21,22). Mei et al argued that the differences among the studies regarding the outcomes may have been attributed to the differences among cultures. There is an adage in Chinese “laugh and grow fat”, which means that fat people tend to be more broad-minded, or there is a high possibility that broad-minded ones are fat. According to this adage, it may be easier for obese women to accept the emergency of the COVID-19 pandemic and suffer less from anxiety and depression (21).

Results from the study by Dagklis et al showed that female smokers presented significantly higher anxiety levels than pregnant non-smokers (28). The association between smoking and anxiety/depression may also be bidirectional. This necessitates future studies in which different methodologies (e.g., Mendelian randomization) are adopted, allowing the researchers to draw stronger causal inferences.

Several studies showed that the number of pregnancies was significantly associated with anxiety (13,18,22,23) and depressive disorder (22). Contrary to the above-mentioned studies, the study by Mei et al found no significant difference between the number of pregnancies and parity and depression, anxiety and stress (21). In Dagklis et al, no differences were observed in the incidences of anxiety among different parity (nulliparous vs multiparous) after the lockdown in Greece (28).

Beheshtinasab et al (14) revealed that higher health anxiety and prenatal distress significantly increased the probability of selecting cesarean in nulliparous women. It should be noted that the cesarean section increases postpartum anxiety, stress, and depression, which can produce outcomes such as decline in fertility, increase in pregnancy intervals, and increase in labor risk in further pregnancies. Beheshtinasab et al suggested several reasons for the selection of cesarean section during of COVID-19 epidemic including: higher distress in the prenatal period as well as higher concern about the fetus rather than themselves, and fear of injury to baby during attempted vaginal delivery (14).
According to several studies, mental health problems stress and anxiety were significantly associated with gestational ages (16,18,32,34). Contrary to the above-mentioned studies, the study by Dagklis et al discovered no differences among the three trimesters of pregnancy regarding the incidence of anxiety (28). In Beheshtinasab et al study, there was no significant statistical association between gestational age (0.370) and health anxiety or prenatal distress scores (14). In the study by Berthelot et al, multivariate regressions were performed but no significant associations were observed between gestational age and the mood and anxiety symptoms \((P=0.72) \) (39). In Durankuş et al, no significant differences were detected among those with depression and those without it after weeks of pregnancy (8). In Mei et al, there was no significant difference between trimesters \((P>0.05) \) in terms of anxiety, depression or stress rate (21).

Numerous studies reported that females tended to be more prone to developing the symptoms of various forms of mental disorders including depression, anxiety, PTSD, and stress during the pandemic. Greater psychological distress arises in women because they represent a higher percentage of the workforce in areas such as retail, service industry, and healthcare that may be negatively affected by COVID-19. In addition to the disproportionate effects on women caused by the disruption in the employment sector, several lines of research have also indicated that women exhibit differential neurological responses when exposed to stressors, perhaps providing the basis for the overall higher rate of select mental disorders in women. The results indicated an association between younger age with higher anxiety (26) and depression level (22,26,31).Contrary to the above-mentioned studies, other study found no significant difference between the incidences of anxiety and maternal age (28).

Conclusion

Clinical, economic, and socio-demographic physical health were found associated with mental health problem during COVID-19. Therefore, it was recommended that potential determining factors should be further explored and identified in order to help protect people against mental health problems.

Conflict of Interests

Authors have no conflict of interest.

Ethical Issues

Not applicable.

Supplementary files

Supplementary file 1 contains Table S1.

References

© 2023 The Author(s); This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.